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SUMMARY 

Since exact flow solutions to magnetohydrodynamic flow problems are 
difficult to obtain, the majority of the analyses have been carried out 
on the assumption that the electrical conductivity (or magnetic Reynolds 
number) of the fluid is either small or very large. Effects in the 
intermediate range are generally not calculated even though they may at 
times be sizable. The essential feature of such an analysis is that 
the solution is assumed to be represented by a power series in the mag- 
netic Reynolds number and only the leading term is considered. The 
present paper is a study of the nature of the higher order approximations. 
The method of obtaining the various terms is discussed. Several examples 
are then presented to illustrate the technique used and the character of 
the higher order solutions. 

It is found that the higher approximations represent the flow field 
if they are found by iteration of the solution obtained by assuming that 
the magnetic Reynolds number is small or zero. Difficulties may be 
encountered, however, when the analysis is carried out by iteration on 
the solution obtained by assuming that the magnetic Reynolds number is 
infinite because the order of the differential equation is changed. 

INTRODUCTION 

When we are confronted with the task of solving a given magneto- 
fluid-dynamic problem, the question generally arises as to what assump- 
tions to make in order to find a solution without an excessive amount of 
effort. Approximations may be made in either the fluid dynamic or the 
electromagnetic equations or both, or in the boundary conditions. One 
such simplification is to expand the velocity, pressure, magnetic field, 
etc., in powers of one or more parameters which are either very small or 
very large. The higher order effects can then be readily estimated or 
solved for in a logical manner if they are required. The series expan- 
sion in positive or negative powers of the so-called magnetic Reynolds 
number, R, = apU2, (a list of symbols with definitions is given at the 
end of this section) has been used a number of times to solve a variety 
of problems. So far, only the zero order or the first term of the series. 
in Rm or l/Rm has been found, and the higher order effects are shown 
to be negligible or are not discussed. The purpose of this paper is to 
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show how to obtain higher order approximations and to indicate the types 
of errors encountered when the series is cut off at the first term. 
Examples are then given to illustrate how the higher approximations 
affect the zero order solution. The geometry of the flow field is kept 
simple so that the influence of the approximation is not masked by the 
complexity of the flow field. 

The stream is assumed to be laminar in all cases and its stability 
is not considered. The solutions that are given are then mathematically 
possible but may not be found experimentally. As is often the case in 
fluid dynamics, the flow may become turbulent so that more complicated 
phenomena will appear. 

It is well known that the assumption of Rm = 0 is the same as 
assuming that the magnetic and electric fields induced by the fluid 
motion are negligible in comparison with the imposed magnetic field which 
generally has its source external to the flow field. The fluid-dynamic 
and electromagnetic equations can then be solved separately because, to 
this order, the magnetic field is assumed to be known throughout the flow 
field. The problem of finding a solution is therefore greatly simplified. 
When the magnetic Reynolds number is taken to be infinite the amount of 
simplification seems not to be so great. The two sets of equations sepa- 
rate only in special cases. The magnetic field configuration is not 
known at the outset because the lines of force move with the fluid. The 
fluid can flow along but not across the magnetic lines of force in this 
limit. Quite often then, the number of lines of force passing through a 
unit area is proportional to the density of the gas since the magnetic 
field is compressed with it. The magnetic field may be a function of 
time as well as the space coordinates and a steady configuration is 
achieved only when the streamlines and magnetic field lines become alined 
as time increases indefinitely. 

Review of Literature 

Before going into the theory of the development of the series 
expansion in Rm = auU2, it is desirable and informative to examine 
briefly the approach used to solve some typical magneto-fluid-dynamic 
problems. The number of problems which lend themselves to a solution 
without simplifying assumptions thus far are few. The solution found by 
Hartmann (ref. 1) for the steady flow of an incompressible electrical 
conducting fluid in a two-dimensional channel and the ingenious solution 
of Bleviss (ref. 2) for. the flow of air as a real gas between parallel 
plates in relative motion are two examples of complete solutions. The 
first (ref. 1) represents the flow of mercury, salt water, liquid sodium, 
or any other liquid conductor through a two-dimensional channel under the 
action of electric and magnetic fields. The second is the Couette flow 
solution for air between parallel plates and considers the compressibility, 
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variation in the specific heats, and conductivity with the temperature 
of the air. At the present time, it represents the most complete 
solution to a magnetogasdynamic problem. 

The incompressible and viscous flow solution at a two-dimensional 
stagnation point which was found by Neuringer and McIlroy (ref. 3) for 
a magnetic field perpendicular to the surface may also be classed as an 
exact solution with certain reservations. The complete electromagnetic 
and fluid-dynamic equations were solved numerically but the induced mag- 
netic field at the wall was assumed to be zero. This corresponds to the 
assumption that an image of the flow field exists on the opposite side of 
the wall and not that the wall is a perfect conductor so that the elec- 
tric potential in the wall is zero. This example illustrates a diffi- 
culty which arises in finding the initial conditions which are to be used 
to solve the flow field numerically. The induced magnetic field at a 
boundary often cannot be found until the entire flow field is known. 
Therefore, step-by-step integration is not expected to be a promising 
method of analysis unless some sort of an iteration process is also used 
in conjunction with 'it. The analysis in reference 2 assumed that the 
flow field was like an infinitely long solenoid in which the induced 
field at the outer wall is known to be zero. The magnetic field at the 
outer wall was then known independently of and without prior knowledge 
of the flow field between the walls. Naturally then, a key to finding 
complete solutions lies in choosing simple configurations with boundaries 
designed so that most or all quantities are known a priori. 

Rm + 0.~ The problems which have been solved on the assumption that 
the induced magnetic field is negligible in comparison with the imposed 
magnetic field are reported in references 4 to 14. This approximation 
has been in use for a number of years to compute the torque, electric 
currents, etc., in electric motors and generators. The boundary-layer 
problems reported in references 4 to 7 (Kemp, Rossow, Lykoudis, and 
Leadon, respectively) were solved without expanding in another parameter. 
In analyzing the flow in pipes (refs. 8 to 10) Shercliff assumes that the 
parameter 4mp/v is nearly zero which, as he points out, is equivalent 
to neglecting the induced field. The solutions reported in the refer- 
ences 10 to 14 (Shercliff, Rossow, Kemp and Petschek, deleeuw, and 
Chester, respectively) were solved by first assuming that the induced 
magnetic field is small and then expanding in a series in Q = aB22/pU 
or M = m B2. Such a double series expansion is a powerful method 
for solving magneto-fluid-dynamic problems. The zero and first order 
terms were found for the solutions reported in references 12 (Kemp and 
Petschek) and 13 (deLeeuw). Several higher order terms were found for 
the solutions reported in references 10 (Shercliff), XL (Rossow), and 
14 (Chester). The variety of problems solved by this technique covers 
the flow at a stagnation point (refs. 4 and 5), the flow in the boundary 
layer on a flat plate or on a wedge (refs. 6, 7, and ll), the flow in 
pipes (refs. 8, 9, and lo), Stokes flow about a sphere moving in the 
direction of the magnetic lines of force (ref. lb), the interaction of a 
shock wave and a magnetic field (ref. 13), and the flow through an 
elliptical solenoid (ref. 12). 



Rm = CO.- When any of the quantities such as the characteristic 
dimensions, velocity, or electrical conductivity of the flow field being 
studied are very large (e.g., in stars), the magnetic Reynolds number 
Rm = 0pU2 may become many orders of magnitude greater than unity. The 
assumption that terms involving l/Rm or the magnetic diffusivity l/al~. 
are then negligible is reasonable. The approximation is used in refer- 
ences 15 to 33 to estimate astrophysical phenomena and to solve various 
magneto-fluid-dynamic problems. A discussion and review of papers deal- 
ing with flows of this type is given by Elsasser in reference 34. The 
material here is intended as an extension of that work. 

Some of the earliest work along these lines appears to have been 
carried out by Cowling (ref. 15). He postulates a possible process for 
the origin of the magnetic fields in sunspots. It is assumed that the 
lines of force diffuse through the fluid at a rate which is slow compared 
to the fluid velocity in a sunspot column. The magnetic field of the sun 
is then essentially swept along with the fluid and projected out through 
the surface of the sun with the fluid. This model is justified by an 
order analysis without specifically mentioning the magnetic Reynolds 
number. Recently, a device has been built by Patrick (ref. 16) which 
operates in reverse to the one just described. Instead of driving a 
magnetic field with a fluid, a gas column is accelerated by a strong 
magnetic field in a copper-shielded tube. The time duration of the cycle 
is so short and the velocity of the gas so high that the magnetic field 
cannot diffuse through the material. The magnetic Reynolds number is 
effectively infinite. 

The waves which propagate along the magnetic lines of force when the 
conductivity is infinite and the viscosity is zero (Alfven waves) have 
been studied by Alf&n and Wal& (see, e.g., refs. 17 and 18). Since the 
fluid has mass and the magnetic lines are under tension, a wave or waves 
can propagate along the lines of force in the same manner that a wave 
travels along a heavy rope or wire. The electrical conductivity of the 
fluid must be high enough so that the fluid and magnetic field may be 
considered attached to each other (i.e., l/up << l).l It was also noted 
by Batchelor (ref. 19) that a magnetic field cannot arise spontaneously 
in a medium due to turbulence unless up >l. 

The recent widespread use of the infinite conductivity concept may 
be attributed partly to its convenience and partly to the fact that it is 
a reasonable assumption for stars and for masses of highly conducting and 
rapidly moving gases. Although the physical dimensions of an electromag- 
netic pinch are not large, the times involved are small and the velocity 
of the compression wave and the electrical conductivity are high enough 
to make the magnetic Reynolds number large. From this point of view the 
concept of the "snowplow shock wave" is introduced and analyzed by 

IThe concept of the magnetic field lines being frozen into the fluid 
when the magnetic Reynolds number is infinite is generally attributed to 
Alfven (see, e.g., ref. 18). 
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Rosenbluth, et al., in reference 20. The structure and characteristics 
of weak waves and of shock waves in a highly conducting medium in the 
presence of a magnetic field are treated by Kaplan and Stanyukovich, 
Helfer, Sen, Cabannes, Burgers, and Pai in references 21 to 26, respec- 
tively. The resolution of an initial shear flow discontinuity in a 
compressible, perfectly conducting medium is treated by Bazer (ref. 27). 
Stewartson (ref. 28) used the large conductivity approximation to analyze 
the destabilization effect of a magnetic field observed experimentally 
by Lehnert (ref. 29) for a shearing motion in mercury. Longhead (ref. 30) 
sets up a finite difference method for solving problems when the conduc- 
tivity is infinite. 

The term in the electromagnetic equations which is dropped because 
l/Rm is negligible contains the highest derivative in the equation. A 
singular perturbation technique must then be used to find higher approxi- 
mations in much the same manner employed in problems characterized by a 
high viscous Reynolds number. This characteristic of the electromagnetic 
equations was recognized and used by Michael (ref. 31) to find the incom- 
pressible flow around a cylinder moving through a transverse magnetic 
field. The flow far from the body (R, = w) is matched with the magnetic 
boundary-layer flow (R, # a) near the cylinder surface. 

The characteristics of a given configuration can be bracketed quite 
well when an analysis is made at Rm = 0 and CO, even though the solution 
for an arbitrary value of Rm cannot be found. This was done by 
Marshall (ref. 32) to study the structure of a magnetohydrodynamic shock 
wave and by Hide (ref. 33) to study the stability and wave growth of a 
liquid with the more dense fluid initially at the top. 

Other series expansions.- The references cited so far comprise part 
of a group of solutions found when it is assumed that the magnetic 
Reynolds number is either very large or very small. Another group of 
solutions has been obtained by series expansions in other quantities. 
The approximation that the stream velocity is small or large was used by 
Elsasser (refs. 35 and 36) and by Cowling and Hare (ref. 37) to study 
the decay of magnetic fields in large bodies such as the core of the 
earth or in stars. In this work, Elsasser introduced the exponential 

decay law 2 = xoe -k=(t/w ) where the values of k are determined as 
the eigenvalues of the equation V2xo+k2xo = 0. Lundquist (ref. 38) 
expanded the magnetic potential vector d (where, curl 2 = Z) in a power 

series in time, X = 
c 

(xntn/n!), to investigate the rate of distortion 
n 

of circular lines of force to an elliptical shape by the converging flow 
of an electrically conducting fluid. The flow around a sphere moving 
through a strong magnetic field was found by Stewartson (ref. 39). He 
assumes that the velocity perturbations are small and then investigates 
the motion at time t = 0 when the sphere has just started moving and 
the time t = co when a steady state is present. 
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PRINCIPAT., SYMBOLS 

b,B magnetic induction 

E electric field intensity 

H magnetic intensity, $ 

J electric current density 

2 characteristic length 

M Hartmann number, fiB2=,/- 

P pressure 

Q magnetic parameter, oB=2 - = RrnRh 
PU 

Re u2 viscous Reynolds number, 7 

Rh 
B= magnetic pressure number, - 

IN= 

Rm magnetic Reynolds number, o~U2 

S Laplace transform variable 

t time 

UJV>W velocity components in x,y,z directions 

U velocity 

X,Y,Z coordinate axes, x alined with free stream 

6 half width of two-dimensional channel 

e excess charge density 

A magnetic viscosity 1 
9z-p 

r7 coefficient of viscosity 

IJ- magnetic permeability 



CL0 

V 

P 

PO 

u 

7 

magnetic permeability of free space 

kinematic viscosity, $ 

density of fluid 

density of air at sea level 

electrical conductivity 

Subscripts 

0 basic quantity 

co free stream 

xJYJz component along coordinate axes 

Superscripts 

(3 vector quantity 

c-1 Laplace transform of the quantity 

The units and conversion constants to be used in the evaluation of 
various parameters are listed in the appendix. 

SERIES DEVELOPMENT 

It is necessary to define the kind of flow fields which are to be 
dealt with before the series expansions in magnetic Reynolds number can 
be discussed. It is assumed that Maxwell's equations may be used in the 
simplified form 

-++ 
V-B = 0 J "0.E = 0 (1) 

curl Z = 5 (2) 

(3) 

The symbol g denote2 the magnetic induction, 5 denotes the electr%c 
field intensity, and J denotes the electric current density with PH = g, 
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and d? = ?S? where p is the magnetic permeability and E the permit- 
tivity'of the fJuid. At the interface between+two media, the tangential 
component of E and the normal component of B are assumed to be con- 
tinuous. The flow field is assumed to be homogeneous so that the mag- 
netic permeability p and permittivity E are constant. The displace- 
ment and Hall currents are considered to be negligible in comparison with 
the quantities which are retained. Ohm's law for a moving fluid will be 
written in its simplified form as 

3 = .(Z+GxTi) (4) 

The density of the fluid is assumed to be high enough so that the 
mean free path is very small compared with the characteristic dimensions 
of the flow field. The analysis will then treat the fluid as a contin- 
uum and not as a group of individual particles. In the illustrative 
examples which are presented the density, electrical conductivity, and 
fluid properties are taken as constant. The charge density 0 will be 
assumed to be zero. The equation of motion of the fluid may then be 
written as 

= $ (curl rj)Xji;+$72G 

and the continuity equation is 

o’.: = 0 

(54 

(5b) 

(5c 1 

(5d> 

The dimensionless quantities r = tU,/l, jj = p/pUo2, x = x/2, 5 = y/2, 
tJ = z/2, 5 = BoFJ Tj = U,G, and s = Eog may be introduced into equa- 
tions (5b) and (5~) to yield 

DC +- =+vp= -E + Q(cx;i;)x; + v$$ 
oEo2 + 

PUo2 

Dry + +j = Rh(CUl-1 ;) Xj? + me 

(54 

(50 

where the magnetic parameter Q = oBo22/pUo is related to the magnetic 
pressure number Rh = Bo2/~pUo2 and the magnetic Reynolds number 
R, = cs~Uo2 by Q = RhRm. The quantity Rh is essentially independent of 
the magnetic Reynolds number Rm and may be quite sizable even though 
Rm is small. Physical situations can then exist in which the product 
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Q = RhRm may be of the order of one even though Rm is small. The 
series expansion being studied is made with respect to Rm instead of 
Rh because, as will be seen in a later section, Rm controls the mag- 
nitude of the induced magnetic field. A suitable modification of the 
equations of motion would remove the constant density restriction with- 
out requiring a change in the equations for the magnetic and electrical 
fields. 

The series expansion techniques to be discussed will apply to other 
groups of problems but, in order to achieve simplicity, the discussion 
will be limited to problems encompassed by the foregoing description. 

Equation of Motion for Magnetic Field 

The electric field intensity 2 and current density 3 can be 
eliminated from Ohm's law by taking the curl of equation (4) and 
substituting the equations (l), (2), and (3). 

curl3 = cGx(S+rjxS) 

When equations (2) and (3) are introduced, the result is, 

o’x (GXFI) = ap 
[ 
- g ++x (GxEi) 1 

or from equation (1) and vector relations, 

or 

(6b) 

Equations (6) relate the changes in the magnetic field to the motion of 
the fluid and will therefore be referred to as the equation of motion of 
the magnetic field. 

If dimensionless quantities are introduced into equation (6a), the 
result is 
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The parameter apUoZ is well-known as the magnetic Reynolds number 
which was mentioned previously and is denoted in this paper by the symbol 
Rm. The quantity l/ap is the magnetic diffusivity. It is sometimes 
called the magnetic viscosity because of the similarity of the roles 
played by it and the kinematic viscosity; Y. 

A number of the references cited in the introduction discuss situa- 
tions in which the magnetic Reynolds number is very large or very small. 
With a few exceptions, it may be said that man-made devices have a small 
value of Rm and stellar devices such as the sun, stars, and core of 
the earth have large values for the magnetic Reynolds number. 

Magnetic Reynolds Number Approximations 

Solutions to equations (5) and (6) can in certain cases be found 
without making further simplifying assumptions. In the majority of cases 
however, it is necessary to make approximations of one sort or another. 
The equations (5) and (6) can be simplified a great deal by setting R, 
equal to either zero or infinity. Higher approximations would then be 
obtained by iteration on this flow field. The magnitude of the iterated 
quantity would be of the order of Rm or l/Rm depending on how the basic 
solution was obtained. One would then think of the process as being one 
in which the various functions are expanded in a power series in R, or 
1/Rm. 

The foregoing ideas are not new and have been discussed in a number 
of papers. The purpose of the present paper is to enlarge upon the 
manner in which higher approximations are obtained and to illustrate 
their effect on the characteristics of several simple flow fields. The 
method of approach to the series expansion will be treated in this 
section. 

First method for small magnetic Reynolds number.- Consider first 
the form of equations (5b) and (6a) when the magnetic Reynolds number is 
very small. If R, (or a) is exactly zero, the differential equation 
for the fluid motion reduces to its nonmagnetic form and 0% = 0. The 
next step is to expand the various parameters in a series in positive 
powers of Rm- 

G = i;,+&Rm+G2Rm2+. . . 
1 

Z = go+siRm+?Z2Rm2+. . . 

p = po+p1Rm+p2Rm2+. . . 
(8) 

etc. 
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where uo, U1, Bo, B1, par pl, etc., are functions of the space coordi- 
nates and time. The zero order solution (subscript zero) is the nonmag- 
netic flow field. The magnetic field B which is imposed by an external 
source is not distorted or changed by the fluid motion because to this 
approximation there is no interaction between it and the fluid. Higher 
approximations are obtained by iteration on the nonmagnetic flow field. 
The differential equations are obtained by substituting the series expres- 
sions (8) into the differential equations (3) and (6) and then equating 
the terms which contain like powers of R,. 

Second method for small magnetic Reynolds number.- Another approach 
may be used when the magnetic Reynolds number is small. Assume that the 
induced magnetic field is negligible in comparison with the imposed mag- 
netic field but that it is not zero. 
to v25=0. 

Once again equation (6a) reduces 
The equation of motion for the fluid does not reduce to the 

nonmagnetic form however, because the force term a(~+~x~) x3 in equa- 
tions (5) does not vanish. In other words, the parameter R, = al~.lJZ is 
assumed to be negligibly small but the quantity Q = aB22/pU = RmRh is 
not small. Such a situation is possible when strong magnetic fields are 
imposed on the flow field. A large simplification is achieved because 
the magnetic field strength in the force term in the momentum equations 
may be taken as the externally imposed magnetic field which is known at 
the outset. The analysis of the fluid and magnetic field motion is dis- 
connected by this process, and each is found as a separate quantity from 
the previous approximation. 
w,a.y - The quantity go 

The analysis is carried out in the following 
is defined as the imposed magnetic induction and 

b as the induced magnetic induction arising from electric currents flow- 
ing in the fluid. The complete magnetic field is given by the sum 

s=so+r; 

Since the quantity c arises from electric currents flowing in the fluid 
conductor, its magnitude can be found from relations given in texts on 
electricity and magnetism (see, e.g., Stratton, ref. 40). 

A magnetic vector potential 2 is defined with the properties, 

GXA’ = z 
ff.71 = 0 I 

(10) 

Its magnitude is then given by 

v 

where V is the volume in which electric currents are flowing and r 

is J(x - x' )2+ (y - y' )2 + (z - z' )2, the distance between the point being 
considered and the location of the electric current element. When the 
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electric current density 3, given by equation (4), is substituted into 
the above expression, the magnetic induction brought about by electric 
currents flowing in the fluid is given by 

If the quantities in equation (11) are put in dimensionless form, 
the induced magnetic field strength g is seen to be proportional to 
Rm. The dimensionless parameter Eo/UoBo, which also appears in equa- 
tion (ll), expresses the relative magnitudes of the imposed and induced 
potentials (see appendix). The integral equation can then be solved by 
successive approximations with the first one consisting of the assump- 
tion that so >> c so that 

Cl = OlJ. 
fff 

vx 
(Eo+~ox~o) 

435 r dv 

V 
(12) 

The next approximatizn b'2 
and (8o+RmGl) for 

is obtained by substituting (~,+~i) for go 
U. in equation (12). It will be found to be propor- 

tional to Rm2. If the iteration scheme is followed, a series expansion 
in R, is obtained for b'. The equation of motion for the fluid is 
treated the same as it was in the first method with one exception; that 
is, the first approximation to the solution (subscript zero) is obtained 
with the electromagnetic force term cr(~+~Xx)X?! included and not set 
equal to zero. The same series expressions (8) are used by both methods 
to find the differential equations for the various iterations. 

Large magnetic Reynolds number.- When Rm approaches infinity, 
equation (6b) reduces to 

33 = Gx((r;&) at (13 > 

The magnetic field is then characterized by the fact that it is influenced 
strongly by the motion of the fluid. As pointed out previously, Alfv& 
has called the process one in which the magnetic lines of force can be 
regarded as frozen into the fluid. 

The equation of motion for the fluid is used in the form given by 
equation (SC), so that no difficulty arises because of the large size of 
R Successive approximations in the example to be studied will be found 
b:'formal expansion of the various physical quantities in inverse powers 
of Rm. 
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31 & LGo+-+~+. . . 
Rm m 

5 rj2 s=IJ,+L+v+. . , 
Rm m (14) 

etc. 

p=po+%+p2+. . . 
Rm Rm 

The order of the differential equation (6b) for the magnetic field 
is reduced when the term (1/op)V2Tf is discarded as a first approxima- 
tion. The resulting singular perturbation nature of the analysis causes 
difficulty in iterating on the basic solution to find higher approxima- 
tions. Special care must be exercised to ensure that the correct solu- 
tion is obtained, and one should be wary of the results obtained by the 
straightforward formal iteration method discussed here. The examples 
illustrate some of the characteristics to be expected from the solution 
of problems found by this technique. 

Small Magnetic Reynolds Number Examples 

Several examples are presented in this section to illustrate the 
technique to be used in finding the solution to problems by the small 
magnetic Reynolds number methods. It would be desirable to find the 
higher approximations to a solution which is published - for instance, 
that of Kemp and Petschek in reference 12 or Rossow in reference 5 or 11. 
The basic solutions are so complicated, however, that the mathematical 
details would be difficult and would mask the effects of the higher 
approximations thereby defeating the intended purpose of the example. 
Instead of working with such complicated flow fields, several simple 
problems will be considered. They possess small practical value but 
have the virtue of being simple enough to be readily amenable to analysis 
and to the observation of higher order effects. 

The following examples will be treated: 

(1) Hartmann type channel flow 
(a) Analysis by first method 
(b) Analysis by second method 

(2) Inviscid channel flow with finite transverse magnetic field 
(a) Channel of finite height 
(b) Channel of infinite height 

I- 



14 

Hartmann type channel flow.- The two-dimensional flow of viscous, 
incompressible, electrically conducting fluid through an infinitely long 
channel (sketch (a)) was first analyzed by Hartmann(ref. 1) and the - 
solution is reproduced in a number of papers. The differential equations 

and boundarir conditions are simple 
enough that the problem can be worked 
out in closed form without further 
simplification. The solution is 
repeated here to serve as a test for 
the approximate methods. 

When the fluid flows through an 
annulus formed by two concentric 
cylinders, the electric current 
lines in the fluid are closed loops 

Sketch (a) 
(circles) around theinner cylinder. 
The electric field E may then be 
set equal to zero because the mag- 

netic field is not in motion. If the radial depth of the annulus is 
small compared with the diameter, the flow may be assumed to be two- 
dimensional and the curvature of the flow field in the z direction 
neglected. The imposed magnetic field is directed radially outward (+y) 
and is therefore perpendicular to the stream direction. The pole faces 
of the magnet are stationary and are assumed to be perfect conductors so 
that ?! = 0 in them. The flow field is assumed to be so long that the 
effect of the end of the channel is negligible and the streamwise varia- 
tion in the various quantities is zero. Under these circumstances the 
closed form of the equations for the velocity, magnetic field, and pres- 
sure are given by the expressions similar to those develo 
(ref. 1). The expressions differ because the potential 5 

ed by Hartmann 
is assumed 

to be zero here. 

u = u cash M- cash M(y/6) 
0 cash M-l (15a) 

(15b > 

Bx = BoRm (y/6)cosh ; - L;L;);nh M(Y/~) 
05c) 

cash M 
l- cash M (15d) 

where M is the Hartmann parameter, m B,6. The combined magnetic 
and fluid pressure does not change across the channel. 

gp+q=o 
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The pressure is then given by 

WoM2 cash M Bo2Bm2 y(M/C)cosh M-sinh M(y/6) 

I 

2 
po-P = (x-x0) - 82 l-cash M + M2 1-cash M 

(15e > 

where P is the reference pressure at some station x = x0 and y = 0. 
The results given by equations (15) will now be found by the first and 
second methods outlined in the last section. 

J' ---- .. 
First method.- The differential equations for the channel flow 

problem described in the previous paragraph are found from equations (1) 
through (6). 

aBY 
ay= 0 

aBx - = -pJz = -apUBy 
aY 

(16a > 

06b 1 

dP t12U Bo 
2 

-= 
ax ~&F.-R,SIJ.UoU 

ap aBx -=-- ay ; Bx - ay 
a2Bx &l 
- = -qLB, - 

w ay 

06~ > 

(16d) 

(16e ) 

The velocity components in the y and z directions are zero every- 
where. Equation (16e) is equivalent to equation (16b) since the flow is 
assumed to be steady. The boundary conditions are 

u=o at y = +6 

u = u, aty=O 

p=P at x = x0 , y = 0 

B, = 0 at y=O 

E=O everywhere 

The velocity, pressure, and magnetic field are assumed to be represented 
by the series expressions 
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U = uo+UlRm+U2Rm 2+. . . 

P = Po+PlRm+PaRm 2+. . . 

Bx = Bx,+BxiRm+ Bx2Rm 2+. . . 
(17) 

BY = BY, +By,Rm+By2Rm2+ - . . J 

It is noted that the equations (15) for the various quantities in 
the flow field are a function of the Hartmann parameter M which con- 
tains the magnetic Reynolds number through the relationship 
M2 = (B22/pqUo)Rm. For this particular problem then, an expansion in M 
would be more suitable. The series (l'i'), however, is a more general 
representation which may be applied to more complicated problems. As 
mentioned previously, the solution to the channel flow problem by the 
series (17) is carried out here for the purpose of gaining an understand- 
ing of this expansion technique. 

When equations (17) are substituted into equations (16b), (16c), and 
(16d), and like powers of Rm are set equal to each other, the following 
equations are obtained. 

dBxo 
dy=O 

aP0 d2uo 
- = 7 dy2 ax 

ape -= 0 
ay 

dBx, uoBo 
-=-v,s dy 

aPl Bo2 d2u, 
- + @U, % = 7 dy2 ax 

ah. 
ay= 0 

dBx2 UlBO -= -- 
dy UO6 

aP2 Bo2 d2u2 
- + spu, ax ul=v dy2 

ap2 BXl -1 

ay= 
- -- 

P dy 

etc. 

> O-8) 
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The derivatives of u have been written as ordinary derivatives because 
U is a function of y only. The successive functions are found by the 
Laplace transform method. As pointed out in the foregoing discussion on 
the first method, the first approximation is the nonmagnetic one. The 
results for the velocity, pressure gradient, and magnetic field terms for 
the series (17) are then found from equation (18) as 

Bxo = 0 

ape au0 -=-- ax 62 1 

apl 5 Bo2 
ax=-zxiT 

Bx, = 

(19b ) 

(19c > 

etc. 

The relations (19) can be shown to be equivalent to the first few 
terms of a series expansion of the exact expressions (15). The velocity, 
for instance, can be written as 

U 
-cl- 
uo 

=l- 

cash M(y/8) -1 
cash M-l 

(M2y2/S22!)+ (M4y4/E44!)+ (M6y6/Ss6!) + . . . 
(M2/2!)+(M4/4!)+ (M6/6!)+. . . 

As is to be expected, the expressions for the velocity in the set (19) 
agree precisely with the first three terms obtained when the fraction is 
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expanded. The terms in the velocity and magnetic field expressions are 
then functions of only M when the quantities 
tions (17) and (19) are combined. 

Bo2/vp and Rm in equa- 
The sum of the various approximations 

for the velocity and magnetic field is illustrated in sketch (b) for a 
magnetic Reynolds number Rm of 0.4 and a Hartmann parameter M of 4. 

..-I term 

Sketch (b) 

A value for R, is needed for the displacement of the magnetic 
field lines. The rather large value of 4 for M was chosen to illustrate 
how the curves scatter about the exact one and is quite high for rapid 
convergence of the series. When M is 2, two terms of the series 
suffice. The exact shape of the magnetic field lines is obtained when 
equation (15~) is integrated with respect to y once, and the lines are 
assumed to be fixed to the wall. 

Second method.- The differential equations (16), the series (17), 
and the boundary conditions of the previous part of this section apply 
here also. The difference between the two methods lies in the differ- 
ential equation for the velocity. The form of equation (16~) is rewritten 
as 

ap a% - + aBo2u = 7 - 
ax aY2 

(20) 

where the term aBo2u is now assumed not to be negligible in the first 
approximation. When the series expressions (17) are inserted into equa- 
tions (16b), (16d), and (20), and the terms containing the same powers 
of R, are equated, the following set of differential equations is 
obtained 
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aP0 d2uo 
- + uBo2uo = q - ax dy2 

SLo 
ay 

rnX1 UOBO -=-- 
ay 6Uo 

&l d2u1 
ax + uBo2u1 = 7 - 

dy2 

dBx, ulBo -z-P 
ay f=o 

ap2 d2u2 
ax 

+ uBo2u2 = 7 - 
dsr2 

ap2 Bxl ax1 -z-p- 
ay I-I dy 

etc. 

The solution to the set (21) is then found as 

BXO =o 

Llo = u, 
cash M-cash M(y/6) 

cash M-l 

WoM2 = P - 62 (x-x0) cash M 
PO l- cash M 

(Y/S 1 cash M- 
Bxl = -B. 

(l/M)sinh M(y/6) 
cash M-l 

u1 = PI = 0 

Bo 2 
P2 

y(M/E)cosh M-sinh M(y/6) 2 
=yp- [ cash M-l I 

u2 = u3 = . . . = B,, = BX3 = . . . = p3 = 

(21) 

P4 = * * 

(22) 

. 0 . 

The higher order terms are all zero because the magnetic field com- 
ponent By is not changed by the fluid flow. The series terminates at 
the point wherz it has duplicated the exact solution (15). Once again 
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the induced magnetic field Bx was computed by a simple integration of 
the equation dBxl/dy = -uoBo/GUo. The integral (12) could have been 
used instead but it is a longer process. 

It is to be noted that the complete and exact expressions for the 
flow field are obtained very rapidly and much more easily by the second 
method than by the first method. 

Inviscid Channel Flow With Finite Magnetic Field 

Channel of finite height.- The magnetic field in the preceding 
example was assumed to extend far upstream and downstream from the obser- 

vation point. The present analysis 
considers the steady-state flow 
disturbance caused by a magnetic 
field of constant strength and of 
finite extent in the x direction,2 
sketch (c). Once again the fluid is 
assumed to be flowing in an annulus 
so that the electric current lines 
are closed loops within the fluid 
and if may be set equal to zero. 
In order to simplify the analysis, 

l-4 

the fluid will be assumed to be 
inviscid so that the velocity is 
constant across the channel in the 

Sketch (c) first approximation. It will be 
seen that the higher order effects 

would be a great deal more difficult to find if the velocity profile were 
complicated in the slightest manner. 

Since the initial velocity profile is not affected by viscosity and 
the magnetic field is uniform across the channel, the same velocity 
profile is computed by both methods in the first approximation. The 
difference lies in that the first method does not predict the pressure 
gradient ap/ax caused by the fluid-magnetic field interaction until 
the second step whereas the second method predicts it in the first step. 
The second method then contains the first and second steps of the first 
method and will therefore be used. 

2The rectangular distribution of the magnetic field which was 
chosen to simplify the algebraic expressions is considered to be a first 
approximation to the shape of the magnetic field generated by an iron 
core magnet. A rectangular distribution could be approached by the use 
of an electric current sheet of large height at the upstream and down- 
stream boundaries of the magnetic field. The presence of the wires or 
metal sheets carrying the electric current would add new phenomena onto 
the fluid motion. 
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The differential equations which describe the flow field are given 

au au 1 aP u-+v-+--+ 
ax ay P ax 5 (lay=- vBxBy) = 0 

av av 1 ap u-+v-+--+ ax ay p ay 
5 (axBy-vBx2) = 0 

au av -+-=o 
ax ay 

aBx aBy 
-+ 
ax 

-=o 
ay 

PJZ = 3 (“By- vBx) = 

The boundary conditions are 

u = uo at x = -lx 

Bx = 0 aty=O 

p=P at x=x,,y=o 

vo = 0 at y = +6 

v=o at y=O 

Bxo =o 

~~~ = B. at -1 < X < 2 

(23a) 

(23b) 

(23~) 

(23d) 

aBX 

3 > 
(23e > 

The v velocity at y = k6 is assumed to be zero in the zeroth approxi- 
mation only. It is necessary to assume flexible walls for the first 
iterated solution so that it can be found without an excessive amount of 
effort. 

Once again the various functions are expanded in the series 
expressions 

. 
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u = uo+uiRm+u2Rm2+. . . 

V = Vo+V1Rm+V2Rm2+. . . 

Bx = Bxo+Bx,Rm+Bx2Rm2+ . . . 

By = Byo+By,Rm+By2Rm2+. . . 

p = po+p1Rm+p2Rm2+. . . 

(24) 

When the equations (24) are inserted into the differential equations (23) 
and the terms containing the same power of Rm are equated, the equa- 
tions for the first approximation are 

dP0 
- + ax aoByo 

2 =o 

aByo 0 
ay 

aP0 o -= 
ay 

i 

(25) 

au0 -=o ax J 
The solution is 

Bxo =o 

B yo = Bo 

u. = u, 

i 

(26) 

p. -P = -(x-xo)uUoBo2 -l<x<l; -6<y<6 

Jz = csTJoBo -l<x<l; -6<y<6 

The electric current J, which flows through the fluid is of uniform 
density in the rectangular area occupied by the magnetic field. It gen- 
erates a magnetic field that causes the flow disturbances which are to be 
computed in the first iteration (subscript 1). The magnetic field 
components are found from equation (12) as 

RmBx, = 
WJoBo 4~ !$I [( (y-y')dz'dy'~' 

x-x')2+(y-y')2+(z-z')2]3/2 
(27a) 

-2 -6 -03 



23 

wUoBo 
RmBy, = - 45c 

(x - x')dz'dy'dx' 
(2Td) 

-2 -5 -03 [ (x - x1)2+ (y-y’)2+ (z - z’)2]3’2 

When the integration has been carried out, the components of the induced 
magnetic field for the first iteration are 

l Bo 

BXl = G (x- ( 

2)2n (x-02+(Y-N2 _ (x+2)2n (x+02+(Y-N2 + 

x-2)2+(y+6)2 (x+2)2 + (y+8)2 

2(y- 8)tan-'s + 2(y+E)tan-l s-2(y- G)tan-l x+l - 
Y- 6 

2 2(y+G)tan-l x- Y-+6 I (28a) 

(Y+ 8)2n 
(x-2)2+ (y-t@2 
(x+2)2+ (y+6)2 + 

y-6 2(x- Z)tan-l x-2 - 2(x- 2)tan -1 Y+E y-q- + 2(x+z)tan 

2(x+ Z)tan-l Y-6 x+2 
I W-N 

From the equations (23) and (24), the differential equations for the 
fluid motion are 

a Ul 1 apl. 2uByluoBo 
u"ax+--+ 

uBo2ul 
P ax P + P 

a Vl 1 ap1 ~Bx,uoBo 
u. ax -+=F-- P 

-+aBy, aBx, 
ax ay 

au, av, 

=o (29a) 

=o (29b > 

=o (29c > 

-+ ax -= 0 
ay (29d) 

Bo aBY, aBx, -=--- 6 ax b (29e > 

The pressure p1 is eliminated from equations (29a) and (29b) by 
differentiating them with respect to y and x, respectively, and sub- 
tracting the two results. Since u. = U,, the equation becomes 
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a2 Ul 
u" z3y + 

UUOBO 3BYl + uBo2 au, a2 Vl 
P ay Pay 

-uo-Jg.=o (30) 

If the flow is assumed to be irrotational, the first and last terms 
cancel; that is, aul/ay = avl/ax, 
Therefore, the particular integral 

SO that Uo(aByl/ay)+Bo(aulp/a;Y) = 0 
is simply 

u1p = 
UO -- B. By1 + f(x) 

Similarly, 

uo -- 
VIP - B. Bxl + g(y) 

(31a) 

(31-d 

The electric current equation together with the continuity equation 
furnishes the necessary expressions to solve for the functions f(x) and 
g(y). From the continuity equation it is found that 

au iP a P V1 u. a%. aByl -+-=-- --- ax ( ay B, ay ax > 
wx) agcy) o +-+-= ax ay 

The electric current equation is used to eliminate the magnetic field 
components so that the functions are determined by 

afb4 ady) % inside magnetic field region 

-+--F= 0 ax 
1 I 

(32) 
outside magnetic field region 

Since either of the functions 

XUO f=T + constant g=o 

or 

f=O YUO 
g= - + constant 6 

will satisfy equation (32), the solution is not unique unless a boundary 
condition is used to eliminate one or the other in the region of the 
imposed magnetic field. The functions f and g introduce a type of 
step function at x = +2. The arc tangent functions also have a step at 
the boundaries and could be thought to compensate for this discontinuity 
in both Bxl and Byi. The relations f = 0 and g = yUo/6 will be chosen 
arbitrarily and the arc tangents adjusted to yield smooth functions for 
u1 and vl. 
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A general solution which contains the complementary solution can be 
found by separation of variables after one of the velocity components has 
been eliminated from equation (30) by the continuity equation. The 
general solution is of such a form that it appears difficult to adapt it 
to suitable boundary conditions. Since the purpose of this paper is to 
illustrate effects and not to solve specific problems, the particular 
solution will be taken as the desired solution. The velocity components 
and the pressure gradients for the first iteration are then given by 

UO ui=--B B. y1 

YUO VI = u" Bxl + 6 
BO 

uo2 aBY, -pB,-g- 

dP1 uo2 aBx, 
- = uBxlBoUo - p - - 
ay Bo ax 

(33a) 

(33b) 

(334 

(33d) 

The vertical velocity vi as given by equation (33b) at the planes 
y = +6 is not zero. In order that fluid is not required to flow through 
solid walls, the walls will be imagined to be made of an elastic sub- 
stance which is deformed so that it corresponds with the stream surfaces. 
The flow is then an irrotational stream with the boundaries specified by 
the path taken by the rectangularly shaped core of fluid which enters at 
x = -co. If solid boundaries were placed at y = +6, the flow would be 
rotational. Typical streamline and velocity profile shapes computed by 
equations (26) and (33) are shown in sketch (d) for 6 =l, 2 = 2, and 
a magnetic Reynolds number of 0.1. The second iteration will not be 
found but it can be seen to be a long and tedious process. 

Sketch (d) 
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Channel of infinite height.- The expressions for the first iteration 
i 

in the foregoing example are long in view of the simple geometry which 
was chosen. 'The length of equations (28) illustrates the complexity to 
be expected in the expressions for the magnetic field when an iteration 
on the basic flow field is attempted in other problems. The relations 
for the past example simplify a great deal if the width 2 of the mag- 
netic field is allowed to become small while at the same time the field 
of view is restricted to the flow near the center of the channel. The 
ratio 2/6 of the width 2 to the height 6 of the channel becomes 
vanishi$ly small. The length of the expression for the induced magnetic 
field B1 is reduced because two of the limits are pushed out to infinity. 
The imposed magnetic field is again approximated by a rectangular distri- 
bution. The differential equations (23) and the boundary conditions which 
were used for the channel of finite height apply here also. The first 
approximation is once more represented by equation (26). The magnetic 
field components for the first iteration simplify to 

20303 

B BO 
Xl = G sss 

(y-y')dz'dy'dx' 
0 

-2 -co -a, [ (x-x’)2+(y-y’)2+(z-z’)2]3’2 = 
1 

(x-x')dz'dy'W 

-2 -a, --co 
[ (x-x’)2+(y-y’)2+(z-z’)2]3/2 

(34) 
The velocity and pressure for the iterated flow field are then found to 
be 

u1 = 0 

v-1 = 0 

-UUoRm2Bo 2 

1 -0UoRo~[(1+2Rmx)~ - 1 

I -UUoBo2Rm2 

x < -2 

1 -2<x<2 

x>2 

(35) 

The variations of the flow parameters with streamwise distance as 
computed by equations (26) and (35) are shown schematically in sketch (e) 
for a magnetic Reynolds number of 0.25. The solid lines represent the 
first approximation given by equations (26) and the dashed lines repre- 
sent the sum of the first approximation and the first iteration. 
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A A A --- --- - Streamlines 

rl----- Magnetic field, B 

‘\,- 
FI uid pressure, p 

ap ---_ Jy=- “u,L92 

------- Electric current, 
J,=dB 

Sketch (e) 

LARGE MAGNETIC REYNOLDS NUMBER EXAMPLES 

A number of papers have been written describing the flow solutions 
obtained on the assumption that the magnetic Reynolds number is infinite 
and therefore that the magnetic lines of force are frozen into the fluid 
( see, e.g., the partial list represented by refs. 15 to 33). The method 
of approximation (Rm = m) lowers the order of the differential equation 
and leads to difficulties associated with the fact that the term contain- 
ing the highest derivative of the differential equation was discarded. 
Problems of this type are sometimes called singular perturbation problems. 
The purpose of this section is to present two examples in which these 
difficulties associated with the equation for the magnetic field are 
illustrated. One additional example which is not affected by assuming 
that the magnetic Reynolds number is infinite for the first approximation 
is also presented. These cases may be briefly described as follows: 

1. Hartmann type channel flow 

2. Channel flow starting impulsively 

3. Inviscid channel flow starting impulsively 
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The last part of this section discusses the circumstances under 
which a power-series expansion in time will exhibit the same singular 
perturbation characteristics brought about by the series in l/R,. 

Hartmann Type Channel Flow 

The channel flow model first analyzed by Hartmann will be reworked 

0 
by expanding the functions in a power series in l/R,. Naturally, the 
sum of the series should yield the exact solution given by equations (15). 
The flow field geometry used in the small Reynolds numbe-r example will be 
used here; that is, the flow is assumed to be contained in an annulus 
which has a large diameter and length compared with its radial depth. 
The flow field is then treated as being two dimensional with the electric 
current lines as closed loops within the fluid and around the inner 
cylinder. All derivatives with respect to time are set equal to zero 
without consideration being given as to how the resulting flow was estab- 
lished. The differential equations which describe the present problem 
(sketch (a)) are then given by 

3BX - = -o~(E,+uB,) 
aY 

SE=2 B aB, d2U 

3X ‘IF +vap 

ap=--- Bx aBx 

ay ~1 ay 

(36b > 

(364 

(36d) 

with 

ah _ aEz = 0 -= at ay 
and v=Ex=Ey=O 

The boundary conditions are 

u=o at y = t-6 

u = u, at y=O 

B, = 0 at y=O 

p=P at x = x0 , y=o 

The series expressions that are to be used to solve the set (36) 
consist of 



Ul u2 u=uo+- +-+. . . 
Rm Rm2 

V1 v2 v=vo+-+-+. . . Rm Rm2 

P=Po+ 3, p2+ 
Rm Rm2 ' ' ' 

Bx = Bxo 
BXl BX2 +-+-+. . . Rm Rm2 

BY = BY, 
BY, BY2 

j----+--t-. . . 
Rm Rm2 

EZ1 
E, = Ezo + R + 

EZ2 2+. . . 
m Rm 
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(37a) 

(37-b) 

(37c) 

(37-d 

(37e) 

(37f) 

When equations (37) are inserted into equations (36), and the terms con- 
taining the same powers of l/Rm are equated, the following sets of 
equations are found. 

?kCO 
ay 

Ez, + UoBy, =o 

aEz, -= 0 
ay 

(38) 

ape By, aBx, a%, 
-=-- 

ax P b +q aF 

ape BXo aBxo 
z=-- P ay 
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Ezi+ulBo = -U,S aBxo 
ay 

aEz, -= 0 
ay 

aPI -= BY, a% + BY, -0 a%= 

ax CL ay --+'I- P ay aY2 
ah. Bxo aBxl BXl aBXo 

ay= _----- I-I ay CL ay 

etc. 

(39) 

If the one-sided Laplace transform is applied to equations (38) and 
symmetry is imposed, the solution for the first (R, = KJ) approximation is 
found as 

ii0 = u, 
1 - .-Es 

S 
I 

1 -e-Es 
zzo = -U,B, s 

cL ape Exe = - - uo +wjge -6s 

s2Bo ax I 

(40) 

where the bar over the letters designates the quantity transformed with 
respect to y. When the functions are inverted and it is remembered 
that the flow field is symmetrical about y = 0, the solution is 

B YP ape xo=--+ 
Bo ax 

By0 = 0 

Ez, = 
1 0 -UoBo -6<y<6 IYI > 6 

uo -6<y<6 
u. = 

0 y = 3% 

(41) 
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where A(lyl - 6) is the Dirac delta 
function which has the character of 
being zero everywhere except at IyI = 6 
where it is infinite. The one-sided 
Laplace transform is being used so that 
negative values of y are not consid- 
ered. The magnetic field variation is 
illustrated in sketch (f). The next and i 

- higher approximations are obtained by 
formal iteration by use of the rela- 
tions (40) with care taken to retain the 
step functions and their derivatives. 

I a3 
Sketch (f) 

Cl = - 

ww~, 
'xl= B3 

0 

(42a > 

u2 = - s2Tj2p2s 3v02 

Bo 4 Uoe-GS 

(42b > 
Bx2 = Uoe-ss 

etc. 

The iterated quantities (42) possess a singularity at the wall which 
grows stronger with each successive step. The only change in the profiles 
with each higher order term occurs at the wall, and this change is repre- 
sented by a singularity. With the exception of the first approximation, 
each term by itself is meaningless. However, the nature of the series 
can be recognized as an expansion of the fraction 
l/l-x = 1+x+x2+x3+. . . ; that is, the series 

UO 1 ape u=---- 
S 7~3 ax iI GB$,~ + &+' 

. .J - uoyss (l + oB$,tl +. . .) 

B, = 2 
x 

1 + GBIz,V + (aBs:,l)z+. . .] 
0 

becomes 
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.‘6S 1 ape - -- 
1 - [ s2/bBo2/'rl ) 1 11 aX s(IJB~/~) l- LS2/;GBo2/q)] 

qUoe 
-6s 

> l- ~s2,;oBo2,~)l 1 (43) 

When equations (43) are inverted and the pressure gradient ape/ax is 
adjusted so that u = U. at y = 0, the velocity, pressure, and magnetic 
field components are identical with the equations (15). It is to be 
noted that the series must be summed before it can be inverted because 
each term by itself yields an unrealistic result. It is to be expected 
that a straightforward formal expansion in many problems of this type 
will have this character. Since it will not generally be possible to sum 
the series to obtain the correct solution, the foregoing approach could 
be used only in special cases. 

Channel Flow Starting Impulsively 

A description of how the final (t +a) velocity and magnetic field 
profiles are established in the channel flow problem treated in the 
previous section will now be found. In the beginning, assume that the 

electrically conducting fluid is 
flowing through the channel with a 
prescribed profile. At the time, 

** t 2 0, a uniform magnetic field is 

I I I I I I I 
, 

Sketch (g) 

imposed across the channel as shown 
in the top diagram of sketch (g). 
Before going into the mathematical 
details of the analysis, the nature 
of the solution which is being 
sought will be discussed. 

It has been pointed out that 
at the start, t = 0. the magnetic 
lines of force are stretched 
straight across the channel. If 
the fluid is a perfect conductor, 
u = co, the magnetic lines are effec- 
tively frozen into the material and 
convected downstream with it as 
illustrated in sketch (g). The mag- 
netic Reynolds number (or conduc- 
tivity) may be large but never really 
infinite. The stretching of the 

magnetic field lines cannot then go on indefinitely, but at some time a 
relative motion or slip between the lines and the fluid must start. 
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Equilibrium is established when the lines of force slip at the fluid 
velocity and are stationary relative to the walls. The equations 
describing the physical quantities at large time should be those found 
by Hartmann and repeated here as equations (15). 

The equation of motion of the magnetic field may be written as 

If the term on the right is zero, the magnetic field is convected with 
the fluid. In the general case then, when this term is small but not 
zero, it represents the relative motion (or slip) between the magnetic 
lines of force and the fluid. The equation of motion for the magnetic 
field for the channel flow problem being considered may then be written 
as 

aBx au 1 a2Bx -- 
at = BO G + w ay2 

or 

au aUs -- = B0 ay B0 F 

(44a > 

where us is the slip velocity of the magnetic field lines through the 
fluid. Since the slope of a line of force is given by 

the slip velocity may be written as 

1 aBx 1 d2x 
us=---=-- WBO ay 

- = Curvature of magnetic lines up d3 (46) 

The physical significance of the statement (46) is seen to be plausible 
by consideration of an analogy which approximates the present model. It 
consists of the impulsive start of the flow of a thick substance like 
grease or heavy syrup through a two-dimensional channel with rubber bands 
stretched across it. The grease represents the electrically conducting 
fluid and the rubber bands represent the magnetic lines of force. Before 
the fluid starts to move the bands are straight across the channel or 
undistorted. When the grease begins to move, the rubber bands are dis- 
placed and stretched. In the initial stages, the two move together, but 
very shortly the rubber bands become taut enough to begin to cut through 
the grease and try to slip backward to their neutral position. 

- 
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Counteracting this is the motion of the fluid which attempts to displace 
the bands a greater amount. Eventually, the rate at which the bands are 
slipping because of their tension equals the velocity of the grease, and 
equilibrium is reached. The ultimate~displacement of the bands is pro- 
portional to the velocity U. of the grease, the length of the bands (or 
width of the channel), and inversely proportional to the solidity of the 
grease (or the rate of diffusion corresponding to l/up). The product of 
these quantities is the same as the magnetic Reynolds number c+U2. Also, 
if the pump is turned off, the rubber bands till drift or sift back to 
their original or neutral position at a rate proportional to their curva- 
ture (see eq. (46)) much as a magnetic field would decay in the analogous 
system. The rate of decay would be similar to the exponential decay, 
e-(t/ucls2) , of magnetic fields. If a shaq corner is artificially gen- 
erated in the rubber bands, by a knife edge, for example, it would be 
expected to be smoothed out very quickly, thus once more bearing out the 
diffusive character of equation (46). 

Attention is now turned from the physical to the mathematical part 
of the analysis. The differential equations for the flow in a two- 
dimensional channel when the magnetic Reynolds number is large which are 
to be used in conjunction with the set (37) are 

aBx au 1 a2Bx 
-==y5+-- at UP ay2 

7 

aBX E,+uB,=-1-- 
0~ ay 

aBY= 
ay 
aEz aBx -=-- 
ay at 

ap _ _ ~~ a~, -- 

ay lJ aY 

(47) 

In the absence of a magnetic field the velocity profile is known to be 
parabolic as a result of viscous effects. It is found that the steady- 
state profile is also a parabola when a magnetic field is present if 
Rm = ~0 and the initial or t = 0 velocity distribution is not a constant. 
A parabolic velocity distribution will therefore be chosen as the initial 
profile in this example. The boundary conditions are then 



35 

u=o 

u = u, 

Bx = 0 

at 

at 

at 

u=Uo(I-s)at 

Bx = 0 

Ez = 0 

at 

for 

y = 55 

y=o 

y=o 

t=o 

t=o 

lyl 2s 

If the flow were inviscidthe velocity at the wall would still be zero in 
the R, = 03 approximation so that the magnetic lines of force are not 
sheared off by the fluid motion or so that infinitely large magnetic 
pressures at the Galls are avoided. The following sets of differential 
equations are obtained when the series (37) are substituted into equa- 
tion (47) and the terms containing the ssme powers of l/Rm are set equal 
to each other. 

aBx, au - = BY0 ay at 
aByo - 0 
ay 

(@a) 

(@b) 

EZo+uoBo = 0 v+w 
au0 ape BY0 aBx0 as, 

Pat+X=T ay +v ay2 

ape B x0 aBx, -z-v- 
aY P ay 

(‘+8d 

(48e) 
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aBx, au0 
- = BYlay 

au1 a2Bxo 

at + BYo -&- + u06 a? 

aBYl -= 0 
aY 

aBxo 
Ezl+ulBo = -Uo6 - 

ay 

h Bxl aBxo BXo aBx 1 
-=-m--v- 

ay CL ay CL aY 
etc. 

(494 

(‘+9b) 

(494 

( 49d 

(494 

The solution to the set (48) is found by use of the Laplace trans- 
form with respect to time to reduce the partial differential equations 
to ordinary differential equations. The flow quantities when Rm = CO 
are then found as 

Bxo = - 2UoBoyt 
62 (5Oa> 

B y. = Bo (5Ob) 

p-p=- QUO 
+--F x+ > 

2U02B02y2t2 
PE4 1 (5Od 

The velocity profile did not change from the one imposed by the 
initial conditions because it represents the final profile. If another 
initial shape had been assumed, the velocity profile would change over 
to the parabolic form, equation (~OC), as time progresses; that is, pro- 
vided that the shape is not the rectangular distribution u = uo for 
-6<y<6 andwith u=Oaty=+6, which is also a stable shape. It 
is also interesting to note that the magnetic field does not take on a 
final profile as time increases indefinitely, but that it continues to 
grow linearly with time. (The distortion of the lines of force are 
illustrated in sketch (g).) It might be thought that the velocity and 
magnetic field configurations should approach the steady-state values 
given by equations (41) as time becomes large. Such does not appear to 
be the case. The example in the next section illustrates a set of cir- 
cumstances which brings about the transition to the profiles (41). 
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Equations (49) are used in the next step of the iteration. The mag- 
netic field component By1 is found to be zero from equation (49b) and the 
fact that By = B. outside of the channel. The equations (49d) and (kge) 
are combined to eliminate the pressure. The Laplace transform of that 
result and of equation (kgc) with respect to time yields 

diil B. d2Zx1 d%, 
ps dy = F dy2 + ' dy3 

diil ssxl = B. - d2Bxo 
dy 

+ Uo6 - 
dy2 

(514 

where the bar over the symbol again denotes the transformed quantity. 
The variables 'Bxi and Yiil are unknowns, whereas d2??xo/dy2 is to be 
found from the first approximation. A difficulty now arises because 
Exe is a function of y to the first power only, and therefore the 
term d2Exo/dy2 is zero, indicating no change in the velocity profile. 
The differential equation for iii is then found as 

d3iii, S2 diil -_ 
dy3 vs +(Bo2/pp) dy = 

0 (52) 

The iterated velocity u1 is zero at the boundaries and at the center of 
the channel. Since equation (52) is homogeneous, the only solution for 
Cl is zero throughout the flow field. The same result is found for 
B x1, pl, and for all the higher iterations. In other words, the higher 
order terms cannot be found by the formal iteration scheme being studied 
here. It is not known whether this is caused by the fact that only whole 
powers of Rm are considered or whether some other difficulty is 
responsible. 

Inviscid Channel Flow Starting Impulsively 

Iterated quantities can be found for the previous example if the 
fluid is assumed to have zero viscosity. In effect then one singular 
perturbation problem (Rm = w) is removed by introducing a new one 
(Re = UZ/v = w) by d iscarding the viscous term in the equation of motion 
for the fluid. The system of equations denoted as equations (48) and (49) 
is unchanged except that now 7 = 0. The result for the first approxi- 
mation is given by equations (50) because it satisfies the differential 
equations with 7 = 0, and the boundary conditions are not altered. The 
velocity at the wall must be zero when Rm = 03 so that the magnetic lines 
of force are not sheared off by the fluid motion. For the.higher approxi- 
mat ions, the fluid can slip past the lines and therefore need not have 
zero velocity at the wall. The boundary conditions on u1 are that it 
be zero at y = 0 and that au/ay = 0 at y = 0 or thatthe profile be 
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symmetrical. Information regarding the previous step is carried forward 
by the relation (kgc). The boundary conditions on Bxl and on pi are 
unchanged. The solution for 7i1 is then 

2u02 l-cash sy(&&? El = - 
s26 l-cash sg(dm) 

(53) 

which may be inverted by contour integration to yield 

.27rnt t cos '. I( cos = - 1 
> 

+ 
&& sin 

2mt 2mY 

w7e) 
6 Gm7a 

sin - 6 
D 

(54) 

A similar set of expressions is obtained for Bxi and pl. The form 
of equation (54) is simplified if the time is assumed large. The quantity 
s in equation (53) is then small,and only the leading terms need be 
retained. The velocity u1 at large time is then given by 

ud = 
2u02y2t 

t+w 63 
Similarly, 

2U02Boyt2 
Bxl)t+w = 63 

(554 

(55b) 

Without going into the tedious details of the analysis the second 
iteration yields 

2UosyV 
u2)t+a = - 64 (%a) 

4 U,?@,t3 
Bx2)t+m = - 5 6,& 

If the process is continued, the general term in the series is recognized 
and the series summed; that is, 

(57a) 
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m 
n 

Bx)t+, = g BoRm 
-2( tu,/s) 

Rm 1 
n=i 

or 

d t-+m 

Bx)t+a, = - g 

(57-M 

The relations (58) not only exhibit the correct characteristics at large 
time but also satisfy the initial (t = 0) conditions. They are not the 
general solution, however, as can be shown by inserting them into the 
differential equations (47). Since equa- 
tions (58) exhibit the correct trends at 
both large and small time, they would 
probably serve as a fair estimate of what 
goes on in-between these limits. The 
velocity profile and position of the mag- 
netic field lines as computed by equa- 
tions (58) are shown as dashed lines in 
sketch (h) for Rm = 5. The solid lines 
are the corresponding lines for m co. 

R= 

Time-Magnetic Reynolds Number 
Equivalence 

The flow in a two-dimensional channel 
is characterized at large time by the 
parameter PtUo/SRm which reduces to 
2t/ayCj2. The time history of a given flow 
configuration is then related to another by 
the inverse ratios of the conductivity. A 
parameter involving the ratio of time to Sketch (h) 
conductivity appears sound on the basis of 
physical arguments and is often used as the time constant for the decay 
of magnetic fields. In particular, Elsasser (refs. 35 and 36) used it to 
analyze the magnetic field of the earth. 

Flow fields which have their magnetic fields distorted from a given 
initial state may be treated by assuming that the magnetic Reynolds num- 
ber is large or by expanding in a power series in time about the initial 
state. If the initial state is one in which the entire magnetic field is 
imposed by a system outside the flow gield, no electric currents are flow- 
ing in the fluid and the quantity 02B is zero as a first approximation. 
Both of the series expansions (l/Rm and time) are then of the singular 
perturbation type and difficulty is to be expected when higher approxima- 
tions are obtained by iteration on the basic flow field. 
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The two illustrations of solutions found by a series expansion in 
l/Rm could be worked by a series expansion in time. The result with 
viscosity is the same in both cases. Higher approximations for the 
series in time are not found in the case without viscosity unless the 
term o(au/at> is discarded. Such a procedure could be thought to corre- 
spond to consideration of the velocity when the time becomes large. The 
expressions (57) and (58) then describe the results for large time 
obtained by either a power series in time or in inverse powers of the 
magnetic Reynolds number. 

CONCLUDING REMARKS 

The solutions of magnetohydrodynamic flow problems may be found by 
expansion of the various flow parameters in positive or negative powers 
of the magnetic Reynolds number 

( c 

Rm = c~y'U2. The first technique 

u= n 
UnRm series 

> 
is straightforward and appears to have no hidden 

n 
mathematical difficulties so that successive approximations lead to the 
correct complete solution. It soon becomes obvious, however, that the 
integral (12), which is used to find the induced magnetic field, causes 
the expressions to become very long and impractically cumbersome to deal 
with. It is very tedious then to treat all but the very simplest of flow 
fields by this technique. It will generally be necessary to turn to 
numerical methods with electronic computers to obtain the higher order 
terms. 

The examples which were worked out by expansion in a power series 
of inverse powers of the magnetic Reynolds number brought out some dif- 
ficulties which are to be encountered. The fact that the highest deriva- 
tive in the equation of motion for the magnetic field is discarded to 
obtain the first approximation leads to a singular perturbation type of 
problem when higher order solutions are sought. The higher order terms 
found by formal iteration on the basic (Rm = W) solution possess charac- 
teristics which are unreal and therefore do not describe the physical 
problem. 

In many problems relating to the growth or decay of magnetic fields, 
the solution will depend on a parameter of the form t/a$j2. The term in 
a series expansion in time will then resemble the terms in a series expan- 
sion in l/R,. The series expansion in time may also be of the singular 
perturbation type if the term 02s is zero at the beginning of the 
sequence of events. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Feb. 27, 1959 
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APPENDIX 

ELECTROMAGNETIC PARAMETERS 

Induced electric 

E= 

Force density 

intensity 

BU = (B, lines/in.2)(LJ, in./sec)lO-a v/in. 

F = BJ = (B, lines/in.2)(J, amp/in.2)8.85x10-8 lb/in.3 

Hartmann parameter 

M= BL = (B, lines/in.2)(2, 

Electromagnetic parameter 

crB22 
&z---z -_..... 

PU 

(a, mhos/in.)(B, lines/in.2)2(2, in.) 6 43x1o-1o 

(.P/P,) (U, ft/sec > 
. 

PO = 0.002378 slugs/ft3 

Magnetic Reynolds number 

Magnetic pressure 

B2 PB=z= 
(B, lines/in.2)2 

P/CL0 

Magnetic pressure number 

B2 Rh=-= (B, lines/in.2)2 
PdJ2 (P/CLO) (P/PO) (U, ft/sec)2 

1. 68xlo-3 
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